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The motion of a spherical droplet in unbounded exterior phase in the presence of a 
stagnant cap of adsorbed insoluble surfactants has been recentJy presented by 
Sadhal & Johnson (1983). The present study considers the axisymmetric motion of 
a gas bubble a t  the exit of a circular orifice in the presence of a similar stagnant 
cap. 

The solution procedure utilizes the boundary integral representation in order to 
obtain the drag correction factor for a bubble translating away from the orifice in 
otherwise quiescent fluid, and for a fixed bubble exposed to Sampson's flow towards 
the orifice. It is demonstrated that the presencc of the confining orifice boundaries 
substantially increases the drag acting on the bubble, and the solution approaches 
the exact result of Sadhal and Johnson as the distance between the bubble and the 
orifice is increased. Furthermore, it is shown that for a fixed amount of surfactants 
on the bubble surface the cap angle increases with distance from the orifice due to the 
diminishing hydrodynamic interaction. Hence, the quasi-steady terminal velocity of 
a bubble rising from an orifice is reduced by the viscous boundary interaction, and 
by the growing immobile cap size. 

1. Introduction 
Heat and mass transfer processes involving drops are common in many engineering 

applications. Some salient examples include chemical extraction equipment and 
direct-contact heat exchangers, where i t  is essential to determine the droplet 
residence time in the transfer chamber and the effectiveness of the transport between 
the two fluid phases (Hetsroni 1982). The major factors that can significantly alter 
the transport efficiency in such systems are the transfer enhancement by the external 
convection and internal circulation, and motion retardation by interfacial Marangoni 
forces. The convective enhancement is, however, extremely sensitive to decreasing 
drop size owing to increasing influence of the surface-active material which is 
commonly present on interfaces between two immiscible fluids. The presence of 
surfactant on the interface between the droplet and the exterior liquid can act to 
suppress the internal circulation (Savic 1953) by forming a stagnant cap on the 
trailing surface of the droplet (Griffith 1962). 

The mechanism responsible for the reduction of the droplet terminal velocity and 
surface mobility by surfactants was first elucidated by Levich (1962). Interfacial 
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tension variation arising from non-uniform distribution of surfactant molecules 
(Marangoni effect) will lower the surface tension on the downstream droplet surface 
where surfactant concentration is larger owing to the accumulation by the sweeping 
external flow (Johns & Beckman 1966). Consequently, a surface-tcnsion gradient is 
established over the droplet surface which acts in thc direction of the front 
stagnation point and opposes the hydrodynamic stress exerted by the external flow. 
Thc purpose of the present study is to examine the addit.iona1 effect of the viscous 
hydrodynamic interaction on the motion of a bubble in the vicinity of a circular 
orifice in the presence of insoluble surfactants. 

In general, the hydrodynamic and mass-transfer-field equations that govern the 
motion of a droplet in another liquid are coupled. The coupling i s  manifested by the 
tangential stress balance on the surface of the droplet, the surface convective 
diffusion equation for the surfactant concentration, and the hulk-solute convective 
diffusion equation in both phases. Surfactant present in the bulk phase can be 
transferred to thc vicinity of the droplet surface by either convective or molecular 
diffusion and, thereafter, adsorb to it. Lcvich (1962) distinguished between two cases 
in which the flux of the surface-active material on to the droplet surface is controlled 
by the slower of the following steps : (i) adsorption or desorption ; (ii) bulk diffusion. 
In the first case, the effect of the surfactant on the interfacial velocity is more 
pronounced than that due to  solute transfer. Hence, the latters influence can be 
neglected, and the flow-field equations can be solved independently from the bulk 
mass-transfer equations. In  the second ease, when the surfactant transfer is the rate- 
limiting step (the surface is assumcd to be in adsorption equilibrium with the local 
concentration in the bulk phase), the surface convective diffusion equation for the 
concentration of the adsorbed substance is coupled with the hydrodynamic equation 
by the tangcntial-stress-balance requirement, and the diffusional flux from the bulk 
to the surface reprcsents the coupling between the interfacial equation and the bulk 
transport equations. A third possible limiting case is that  of the surfactant being 
insoluble. Then, a vanishing flux of the surfactant to the droplet surface is assumed 
and the Marangoni phenomenon is controlled by surfactant transport along the 
interface due to convection and surface diffusion. 

All previous theoretical studies have considered the motion of a droplet in 
unbounded flow under various limiting assumptions which are useful mathematically 
for the uncoupling of the governing field equations. Wasserman & Slattery (1969) 
introduced a perturbation solution for the Hadamard Rybczynski velocity field 
when a small quantity of surfactant is present in the exterior liquid. Sevcral 
modifications of thc analysis have been carricd out by Savillc (1973), Harper (1974) 
and Leven & Newman (1976). The influence of surface shear and surface dilatational 
viscosities was incorporated in the analysis by Argawal & Wasan (1979) who 
extended Saville’s (1973) boundary-layer approximation for the diffusion of 
surfactants to the droplet interface. Other perturbation analyses, based on Levich’s 
treatment of the problem, considered small deviation of the surfactant concentration 
from the equilibrium level (Schechter & Farely 1963; Newman 19671, which 
represents uniform rctardation of the interfacial velocity, and is suitable for large 
surface-diffusion coefficient (small PBclet number) with non-vanishing velocity over 
the entire droplet surface. 

Experimental observations of droplets of small and moderate size in liquids 
contaminatcd by surfactant have indicated, however, that  the interfacial vclocity is 
not reduced uniformly, but that  a stagnant cap is formed a t  the rear of the drop (Savic 
1953; Garncr & Skelland 1955; Griffith 1962; Horton, Fritsch & Kintncr 1965; 
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Huang & Bintner 1969; Beitel & Heideger 1971). The mathematical difficulty in 
treating this problem arises from t'he fact that  the boundary conditions on the 
droplet surface are mixed owing to the immobile cap surface. Several approaches had 
been partially successful (Davis & Acrivos 1966; Harper 1973, 1982) before Sadhal 
& Johnson (1983) obtained the exact solution to hhe problem provided that, t,he cap 
angle is specified, based on Collins (1961) analysis of dual series equabions. 

In all cases discussed above, the unbounded problem has been examined (an 
extensive summary of the various possibilities has been present'ed by Holbrook & 
Levan 1983a, 6) .  Nevert'heless, the influence of confining boundaries on the droplet 
velocity and surfactant cap angle has not) been considered. This paper present>s the 
first solution, using the integral method, for the problem of a bubble rising from an 
orifice in the presence of an immobile cap. 

2. Mathematical formulation 
The system under consideration consists of a gas bubble of radius a' translating 

axisymmetrically with velocity IJ' away from an orifice of radius b' (figure l ) ,  in 
viscous incompressible fluid of viscosity p and density p.  The interfacial tension is 
assumed to be sufficiently large so as to maintain a spherical bubble shape. 

In the limit of low Reynolds number and high P k l e t  number the hydrodynamic 
governing equations are 

? L o ,  (2.1) ax, 
a 2 5  - 8' 

axidxi a x i -  
and the interfacial surfactant transport equation is 

(2.2) 

(2.3) 

Here, C:, is the velocity vector, P is the pressure, Tis the concentration of the surface- 
active substance and the subscript s denotes the interfacial phase. The variables in 
the above equations are made dimensionless by using the bubble radius as a 
lengthscale, a characteristic velocity IT,,, which is conveniently defined later, and t'he 
stress (or pressure) scale ,uU0/a'. The surface concentration is scaled by the maximum 
value of r a t  8 = 0. 

Following Sadhal 8r Johnson (1983), integration of (2.3) in spherical coordinates 
yields the result 

where A is a constant, which must be zero in order for the solution to be houndcd at. 
0 = 0 and 8 = 7 ~ .  Therefore, an immobile surfactant' cap must be present on the 
interface such that 

= d/sin 8, (2.4) 

1; = 0 for0 < 8 < y ,  ( 2 . 5 u )  

where P f 0, and the remaining surface is mobilc: ( I;, + 0) provided 

r=0 f o r y 6 8 d x .  (2.56) 

Consequently, the immobile-cap formation on t'hc bubble surface, described by (2.5); 
introduces mixed hydrodynamic boundary conditions that must be satisfied on t,hc 
interface. Choosing spherical coordinates ( r ,  8, $) a t  the bubble centre, and cylindrical 
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t a = l  
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FIGURE 1 System geonietry (the stagnant cap is denoted by the heavy line) 

coordinates (R, 6, Z )  a t  the orifice centre, the boundary conditions can be written as 
follows : 

I.;(x) = - L'k when x~R{;1) ( r  = 1,  0 < 8 < 7). (2.6a) 

V, = -U c . 0 ~ 8 ,  7,&x) = O when ~ € 8 ; ~ )  ( r  = 1. y < 8 < n), (B.6b)  

wherc V, is the radial velocity wmponent, r,,) is the tangential stress, x is the position 
vector and k is the unit vector in the Z-direction. Thc additional no-slip condition on 
the orifice wall requires tha t  

l<(x)  = 0 when XES, (Z = 0. 12 3 b) .  ( 2 . 6 ~ )  

while far from the orifice, when (X'+Z') ; - t  CO, the prcssure is prescribed by 

I' = P,, - for Z >< 0 (2 .6d )  

and the vclocity must vanish, I:(x) = 0. Thc system boundaries in (2.6) arc denoted 
by 8:) for the stagnant cap, Sh2) for the olean bubble surface and S, for the orificc 
wall with S,t denoting the two sitlcs of thc wall as  Z t O *  respectively. 

The solution of t h t  governing cquatioris (2.1) and (2.2). subjcct to  the boundary 
conditions (.2.6), is now presented in terms of thc integral mcthod described by Yan 
et al. (1986). In  principle, it can be solved by the multipole collocation technique. 
which was used by Dagan, Weinbaum & Yfcffer (1082) for the axisymmctric motion 
of a solid sphere towards an orifice. Howeber. in the presencc of a stagnant cap the 
truncated series converges very slowly owing to  the diwontinuity of the interfacial 
velocity, as demonstrated by Davis & Acrivos (1966) for the motion of a similar 
bubble in unbounded flow. Following the procedure of Iran ~t al. (1986), the fluid 
vclocity is tlccomposed into two distinct contributions. the Sampson solution V : ( x )  
for the flow through an orifice in the absenw of the bubble; and the disturbance 
l'g(x). which can bc repwsented in tcrms of thc hydrodynamic. potmtials gencrated 
by thc distribution of singularities over all the boundaries Hence, 

= I.'l;(x)+ V i ( X ) ,  ( 2 . 7 a )  
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and thc corresponding pressure field is decomposed as follows : 

P ( x )  = Pq(x)+P’ (X) ,  ( 2 . 7 b )  

where the Sampson solution is given by (Happel & Brenncr 1973, p. 153) 

where 

( 2 . 8 ~ )  

(2.8bj 

(2.8c) 

(2.9a, b )  

(2.9c, d )  

Here, q is the dimensionless volume flux and ( A ,  5)  are oblate spheroidal coordinates. 

2.1. Integral represmtation 

The Green’s formula for IowReynolds-number flow was first derived by Lad- 
yzhenskaya (1963) in the form 

whcre V, and 1’ are the solutions of (2.1) and uf and pk  are the solution at point x due 
to a Stokeslct in the kth direction a t  point y .  The latter are given by 

(2.11a) 

(2.11 b)  

where rsy = ( x - y /  and St, is the Kronecker delta. Finally, 71, represents the stress 
tensor associated with the two velovity fields. namely 

(2.12 a )  

(2.12 b )  

Here, n, is the exterior unit vector to the boundaries aQ of the f l o m  domain Q. and 
the subscript y in dSy and dQn, indicates integration over y .  

auk auk 
( x ,  Y 1 + 

3% 3% 
Tt3 [uk ( x ,  Y j1 = - s,, P k  ( y  . x )  + ( x ,  Y )  . 
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IJsing the Green’s formula the velocity field V ( x )  can be represented in terms of the 
single and double layer potcntials V!’) and Viz)  respectively 

v , (x)  = V i l ) ( X )  + V;”(x) ,  (2.13a) 

where v p ( x )  = - u~(x,Y)7;c3[V(Y)lrL3(Y) CIS,, (2.136) s, 
(2.13 c )  

The general representation (2.13) is valid if both the velocity V ( x )  and the pressure 
P(x)  vanish at infinity Hence, it cannot be directly applied to the present system 
where 3 Pa Nevertheless, this restriction can be eliminated by using the 
decwmposition (2.7) whereby the disturbance fields V ( x )  and P’(x)  vanish a t  infinity. 
Furthermore, for a Lyapunov surface, the single layer potential V!l) (x)  is continuous 
but the double layer potential V!2) (x )  is discontinuous across 8 2  and is given by 

lim V:’ ) (X)  = V:‘)‘(x,J+fl;z(x,) when x , E S Z ,  x , E ~ S Z ,  (2.14) 

where the factor f applies only for continuous surfaces. Since thc infinite wall with 
the orifice is not a Lyapunov surface (has no definite tangent at the edge of the 
orifice) the Green’s formula (2.10) is not directly applicable. Therefore, the flow field 
shown in figure 1 is divided into two semi-infinite regions separated by the orifice wall 
such that the boundary of each region consists of Lyapunov surfaces. Consequently, 
Green’s formula can be applied for the disturbance field in each region and the 
summation of the two exprcssions yields 

x fXiI 

(2.15) 

wherc S,  denotes the bubble surface and X,- denotes the planar wall on the bubble 
side. The density functionf,(y) represents the stress difference across each boundary, 
namely 

fLtJ’(y) = 7’$” v‘(y)] = -7’p[ v ‘ (y ) ] .  (2 .16a)  

fLW)(Y) = 7 ’ ~ ~ ) l V ( Y ) l - ~ ~ ) [ V ( Y ) l ,  (2.166) 

where k = 1 . 2 , 3 ,  and the superscripts (b), ( - )  and ( +)  denote S‘”), S,- and S,+, 
respectively. It is important to emphasize that the double layer potential does not 
contribute to the integral representation (2.15) becausc V;(y )  = 0 on &. 
Furthermore, the first two integral terms in (2.15) are evaluated on the bubble 
surface where mixed boundary cwnditions are prescribed according to (2.6). Finally, 
(2.15) is valid for any point x in the flow field and thcre is no geometrical rcstriction 
on the position of the bubble even if it is partially inside the orifice. Still, the latter 
configuration is excludcd from the present analysis because under such conditions 
bubble deformation is significant. 
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Using (2.15) in the application of the boundary conditions ( 2 . 6 )  with the 
discontinuity condition (2.14) yields the following integral equations : 

and U ,  = 0 for k = 1 or 2, while U ,  = -U .  The above equations have to be satisfied 
for i = 1 and i = 3 with 8 = 0 bccause of thc axial symmetry of the geometry. 

2 2 .  Numerical collocation technique 

Owing to the axisymmetry of the present system the boundary conditions will be 
applied at discrete points on the bubble surface and the orifice wall in thc same 
meridian plane. The choice of the collocation points is different for each surface. 
For the solid cap region on the bubble surface, Sg), L points are chosen such that 
B, = S, 0, = y ,  and the remaining points are given by 

where 6 is a small positive number (chosen as 0.01). Similarly, on the clean interface 
of the bubble, Sf), M points are selected such that 0; = y ,  SL = 71-8 and the 
remaining points are distributed according to the scheme given by (2.19a). The 
points 8 = 0 and 8 = 7c in the above procedure are replaced by the points # = 6 and 
8 = 71-8, respectively, in order to eliminate the singular behaviour of the final 
coefficient matrix in the set of linear algebraic equations. Furthermore. in the 
vicinity of the two poles and near the discontinuity B =  y ,  an uneven point 
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distribution is prescribed in order to improve the accuracy of the results. On the 
orifice wall, kqW-.  N collocation points are chosen according to the distribution 

(2.196) 

where R, is a large positive number which defines the truncated domain ( b  < H < 
8,) instead of the infinite domain ( b  < R < a). Numerical tests have demonstrated 
that it is sufficient to  set R, = 202, in order to achieve acceptable accuracy (Yan 
1985). 

In  order to replace thc integral equations with a set of algebraic equations it is first 
necessary to rewrite the unknown functions in terms of the appropriate coordinates. 
On the solid cap surface 

f i b ) ( x )  = - [T,,(6) sin 6+ Yi,(6) cos 61 cos q5. 

f i b ) ( x )  = -T,,(B) cos6+Tr,(B) sin6. 

(2.20a) 

(2.20b) 

(2.20 c) 

f i b ) ( x )  = - [T,,(B) sin 6+Tr,(6) cos 61 sin q5, 

Similarly, on the clean surface of the bubble 

Ti:)[ V‘(x ) ]  = [ t , , (O) sin O+t,,(B) cosO] cosq5, 

Ti:)[ V‘(x)]  = [t,,(O) sin 6+ t , , (O) cos6] sin 4, 
(2.21 a) 

(2.21 b)  

( 2 . 2 1 4  

(2 .22  a )  

(2 .22c )  

Ti:)[ V‘(x) ]  = t,,(6) cosf?-t,,(6) sin8; 

V ; ( x )  = 1- U sin 6 cos 6 - V%(6)]  cos q5 + Vk(6) cos 6 cos q5, 

V;(x )  = -U c o s 2 6 - V ~ ( 8 ) - V ~ ( 6 )  sin6. 

VL(x) = [ - U cos 6 sin 0 - V”,O)] sin q5 + V i ( 6 )  cos B sin q5, (2 .22  b )  

Finally, on the orifice wall, 8, 

,f!w)(x) = ~ F ) ( R )  cos 8, ~ L W ) ( X )  = ~ L W ) ( R )  sin 8, f ~ w ) ( x )  = j iW)(~) .  
(2.23a, b ,  c )  

Consequently, the unknown functions in (2.20)-(2.23) that have to be determined are 
T,, and TrH on the stagnant cap, t,, and V ;  on the clean bubble surface, and fk”) and 
f (z“) on the orifice wall. These functions are approximated by a piecewise quadratic 
polynomial along the corresponding boundary intervals, which are given by 

e “ , = O ,  S,=i(8,+6,+,) f o r n = 2 , 3  , . . . ,  L - 2 ,  8,_,=y on&?, 

& = y ,  e ” , = i ( ~ ~ + ~ ~ + , )  f o r n = 2 . 3  ,..., M - 2 ,  eM_,=n: onSk2), 

R, = b, R N p 1  = R, on Sw-. 

(2.24 a )  

(2.24b) 

(2.24 c )  

- A - 
R, = +(En -+ R,,,) for n = 2 , 3 ,  . . . , N -  2, 

Hence, the quadratic polynomial representation of T,, is 

T,,(6) = T::-’)(AF) COS’O+B~’ c o s B + G ~ ’ )  

+ T p ( A p  cos2 6 + Bp cos 6 + cp) 
(2 .25)  
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where !Pg) = 7’,,(O = O?). and the interpolation cwefficients Kjn)  and P:“) are 
evaluated from the condition that !i’br(0) = T ’ Z )  at O = 8,. An analogous quadratic* 
representation (2.25) is employed for the remaining unknown functions. For t,, the 
interpolating coefficients are denoted by A:.  B,’ and 6’: (i = 1 .2 ,3 ) ,  while for f p) they 
are denoted by A:, Bf and Cl. respectively. In thc latter. the function is quadratic 
in R. The polynomial representation of the tangcntial stress on the bubble surface 
requires clarification since thc exact solution of Sadhal & ,Johnson (1983) for uniform 
flow past a droplet with a surfactant cap demonstrates the presence of a wcak 
singularity in the stress at  the edge of the cap. The singularity a t  0 = y behaves as 
(cos 8-  cos y)-i, and is similar to the rim singularity given by Collins (1963) and 
Dorrepaal, O’Neill & Ranger (1976) for the flow past a solid spherical cap. In these 
problems the singular behaviour is derived analytically from thc solution of a set of 
dual series equations that represents mixed boundary conditions on a spherical 
surface. Clearly, an asymptotic representation o f  the tangential stress in this form in 
the vicinity of the cap rim, B =  y ,  can enhance the accuracy of the eventual 
computations. Nevertheless, the behaviour near the singularity at 0 = y can be 
approximated by a polynomial similar to the one given by (2.25). This representation 
is based on the series expansion given in Sadhal & Johnson (1983) in terms of the 
associated Legendre functions of integer degree and order - 1. Although the series 
representation excludes the rim 8 = y ,  the bchaviour in the vicinity of  8 = y is 
approximated by the polynomial which can be interpreted as a truncated series. This 
approximation does not provide an accurate description of the stress a t  the e d p  of 
the cap. Still, a correct behaviour in its vicinity is not precluded since the c.omputed 
numerical value of the discretized stress T Z )  is not restricted. Consequently. the total 
drag acting on the droplet, which represents the directional integration of the stress 
over the entire spherical surface, is impalpably influenced by this approximation. 
The drag convergence tests, discussed in § 3 ,  demonstrate sufficient convergence with 
increasing number of collocation points despite the fact that  convergence of the local 
interfacial stress and velocity is not necessarily attained. The latter will require a 
considerable increase in collocation points, and will result in prohibitively long 
computation time. 

Finally, the kernels in the integral boundary conditions (2.17) of the single and 
double layer potentials are redefined by the equations 
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wherc the overbar indicates the coordinates of point y. The functions defined by 
K i l ,  H i l ,  H i (  W), Hi and Hi(  V )  are known functions of e and 6, while the functions 
F,,, and f$z are known functions of R and 8. The expressions for these functions, 
although straightforward, are excessively long and will riot be given here (for more 
details see Yan 1985). 

Application of the boundary conditions (2.17) using the definitions (2 .25)  and 
(2.26) provides the following algebraic equations : 

1 M-1 3 c) M-1 3 

w h e n x =  ( l , I 9 , 0 ) = ( ~ , 0 , ~ ) € ~ s ~ ' ) ,  i =  1 o r 3 ;  ( 2 . 2 7 ~ ~ )  

3 1 
2x 4x 

= - U cos O sin 19- Vg(x) +-[Shl( 1 , O )  +AS,,( 1, 8) ]  +-8;,(i, 8)  

w h e n x  = ( l ,8 ,0)  = (R ,O,Z)ES?);  (2.276) 



Axisymmetric rise of a spherical bubble 309 

L-1 3 

I L-1 3 i M-1 3 

when x = ( l , O , O )  = ( R , O , Z ) E S ~ ) ;  ( 2 . 2 7 ~ )  

So(&, I ,  r ,  8, a,  b )  = c o s 1 - 1 8 ~ r P ,  d#d8, (2.29 a )  

S , (Fi , I ,R ,Z ,a ,b)  = ~ ~ R 1 8 ~ r & c l Q d I I ,  (2.29 b )  

S W c ( r ,  19) = /:[I?;( W) d6d8, ( 2 . 2 9 ~ )  

Xvz(r, 8)  = /:Hi( V )  d$d8, 

a 

(2 .29d)  

(2.29 e) 
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When (2.27) are applicd at ( L + N + & )  points on the system boundaries. they 
provide I = 2 ( I , + M + N )  linear algebraic equations which can be solved for I 
unknowns ; I, unknown values of 5”;;) and T:;) (n  = 1 .  . . . . L ) ,  unknowns of tg) and 
Vh (n  = 1 . .  . . . N ) ,  and S unknowns off::) and f y )  (n  = 1 .  iv). The equations are 
solvcd using a standard Gaussian elimination incthod with complete pivoting. Thc 
most tedious part of this procedure is the evaluation of the integrals in (2.27). The 
intrgration with respect t o  6 can be expressed analytically in terms of clliptica 
integrals of the first and second kind. Thc integration with respect to  g i s  thcn carried 
out numerically (k’an et al. 1986). 

3. The drag force on the bubble 

cap is determined from the equation 
The evaluation of the drag force acting on thc bubble in thc presclncc of thv solid 

Fz = TTT(H) cosHdh’,- T,,(B) sin HdB, s sp s S j; ’ 

+ J T , ( y )  cos 8 dS, sp 
(3.1) 

wherr dS, = sin 8 (18 d$. Mrith t h e  piccewise yuadratk interpolation the first thrce 
integrals are performed analytically, while the last two arc performed numerically 
with the stresses TEj givcn from the Sampson solution for the flow through an orifice 
in thc absence of the bubble. The calculated drag is s c a l d  by the refcrcncc drag 
J i u  for the motion of a bubble with a stagnant cap in an infinite medium. The latter 
is given by the exact solution of Sadhal & Johnson (1983) 

Fzu = U,(47c + 2y + sin y - sin 2y  -a  sin 3y) ,  ( 3 . 2 )  

where [ic = I7 when the bubble is translating a t  constant velocity in quiescent fluid, 
and 

(3.3) 

when the sphere is held a t  a fixcd distance from thc wall 2, in thc prt’senc’e of a 
pressure-gradient-driven flow into the orifice. Equation (3.3). in this case. IS the 
Sampson velocity a t  thc bubblc centre in thc absence of the bubble. Conscqucntly. 
the ratio A = PZ/Fz,,  will be presented for (i)  a bubble moving away from the oritiw 
in quiescent fluid, A,. and ( i i )  a fixcd bubblc in the presence of Kanipson flow ton ards 
the orifice, A,. 

Before applying the solution procedure many corivergencc tests have been carried 
out. In these tests the number of collocation points on each surface was gradually 
increased until the result for the drag corrcction factor, A, or A,, did not changc up 
to  thc third significant digit. A summary of the selected values of /,. 32 and S for 
different cap angles and all bubble-to-orificc spacings is given in table 1. 

A comparison between the present results and the results ohtaincd by Dagan rt al. 
(1982) for the axisymmctrica motion of a solid sphere near an orifice is shown in tables 
2 and 3. The latter has employed the boundary collocation ttwhniyue on the sphcre 
boundary, while the no-slip boundary conditions on thc orificcx wall have b c c ~ n  
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L Jf 
- ~ _ _  ~~ Y 

0 0 0  25 3 0  20 20 
0 5  13 13 25 25 20 20 
1 .0 15 15 20 PO 20 20 
1 5  20 20 20 20 20 20 
2 0  21 21 25 25 20 20 
2 5  25 25 9 9  20 20 
n: 25 25 0 0  20 20 

TABLE 1. Selection of bouridary collocation points (first column corresponds to a translating 
bubble, M hile the second corresponds to a fixed bubble 111 Sampson flow) 

2 0  a16 = 0.1 a16 = 0.5 a/b  = 1 a / b  = 10 

10 ( a )  -1.086 -1.124 -1.125 -1.126 
( b )  -1.060 -1,124 -1.126 -1.126 

5 ( a )  -1.084 -1.260 -1.280 -1.284 
(6) -1.053 -1.251 -1.280 -1.285 

3 ( a )  - 1.070 - 1.404 - 1.530 - 1.568 
( b )  -1.051 -1.358 -1.517 -1.569 

2 ( a )  -1.061 -1.488 -1.871 -2.123 

TABLE 2. Comparison of F,/E'," for a translating solid sphere; (a )  present results. ( b )  Dagan et al. 
(1982. (alb = bubble-to-pore radius ratio.) 

( b )  -1,051 -1.392 -1.806 -2.125 

Zo a / b  = 0.1 a / b  = 0.5 a / b  = 1 a/b = 10 

10 ( a )  1.094 1.132 1.133 1.133 
(h )  1.056 1.119 1.120 1.121 

5 ( a )  1.100 1.299 1.312 1.323 
(6) 1.047 1.231 1.264 1.270 

3 ( a )  1.091 1.516 1 .6G9 1.717 
( b )  1.044 1.292 1.479 1.560 

2 ( a )  1.084 1.697 2.223 2.671 
(6) 1.044 1.254 1 .63X 2.267 

TABLE 3. Comparison of Fz/Fzo for a stat'ionary solid sphere in  Sampson flow ; ( a )  present results, 
( b )  Dagan et al. (1 982) 

satisfied analytically. Hence, in principle, the results of Dagan et ccl. (1982) should be 
more accurate. A similar solution by Davis (1983) was obtained for a Stokeslet which 
can represent the motion of a small solid sphere with an accuracy of the order of 
( c ~ / b ) ~  Yan rt ul. (1986) have used a cwmbinctl integral technique and multiplc series 
representation whercby a collocation technique was utilized to satisfy the boundary 
conditions on the sphere surface while the integral representation accounted for the 
presence of the orifiw wall (a comparison between the results of Dagan et 01. (1982). 
Davis (1983) and Yan P t  al. (1986) is given in the latter). 
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For most cases considered in the comparison the present rcmults differ from the 
results of Dagan et al. (1982) by one to few percent except for large spheres close to 
the orifice in Sampson flow. A similar accuracy was attained in the computations of 
Yan et al. (1986), which is a typical accuracy for the integral-equation method in 
general. The results of Davis (1983) arc comparable with the present results for small 
spheres (a /b  < 1 )  but their accuracy deteriorates when the sphere radius is increased. 
The difficulty in obtaining accurate results when thc sphere is large compared with 
thc orificc diameter and close to  i t  in Sampson flow stems from the fact that  for such 
conditions the flow field, and the consequential stress tensor, can possess stcep 
gradients which requires a substantial increase in the number of collocation 
points. 

The drag correction coefficients, for the two cases considered, are shown in figures 
2 and 3. Figure 2 shows A, which represents the ratio of the drag in the presence of 
the orifice to thc drag acting on the bubble with a stagnant cap in unbounded 
medium. The coefficient is described as a function of bubble-to-orifice distance, Z,, 
and cap angle, y .  For cap angle y = K ,  the results correspond to the drag acting on 
a solid sphere, which is higher than the drag acting on a clean bubble with y = 0. The 
effect of bubble-to-orifice distance exhibits the strong hydrodynamic mtcraction 
when Z, < 5 with diminishing effect as the spacing is increased. In the limit of large 
spacing the drag is shown to approach the solution of Sadhal & Johnson (1983) for 
thc unbounded problem ( A  --f 1) .  Thc influence of the cap angle appears to bc critical 
at y z in rad, where the drag increases sharply from the low value associated with the 
clean bubble to the solid-sphere results. This effect is more pronounced at small 
bubble-to-orifice distance and it decreases with increasing spacing. Thc behaviour is 
clearly indicative of the large shear stresses at the trailing surface of the bubble. A 
similar behaviour is shown in figure 3 for A, which corresponds to  the drag correction 
factor for Sampson flow towards an orifice in the presence of a bubble in a fixed 
position. Here, the effect of cap angle appcars to be critical when y M !n although thc 
increase in drag is not as steep as in the first case. 

The terminal velocity of a bubble rising away from the orifice in the presence of 
flow into the pore can now be obtained by requiring a zero net force on the bubhle. 
Using the result of Sadhal & Johnson as a characteristic velocity the force balancc 
on the bubble can be written in the form 

U,h,+U,h, = 1 .  (3.4) 

(3.5) 

Hence, the bubble will remain in a fixed position when U ,  = l / A 5 ,  i t  will rise when 
A,U, < 1 and approach the orifice when A,U, > 1. The direction of motion i s  
determined, therefore, by the conditions imposed by Sampson flow towards the 
orifice, while the magnitude of the bubblc velocity is further influenced by the 
hydrodynamic interaction cocfficicnt A, which can reduce substantially the rate of 
bubble rise in the vicinity of the orifice wall. Finally, in the absence of Sampson flow 
the bubble will rise at the rate 

Consequently, the bubble velocity U ,  is given by 

u, = (1 - u, A,)/& 

u, = l / A t .  (3.6) 

It should be noted that for the case where Sampson flow is prescribed in the same 
direction as the bubble motion, the problem cannot be treated by the present model 
because the surfactant concentration is unknown and the stagnant-cap geometry 
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ot be determined a priori. In this case the governing equations are coupled, 
the surfactant concentration has to be obtained from the solution itself. 

nd 

The significance of the results presented in $ 3  can be greatly enhanced by 
determining the way the cap angle changes with distance from the orifice for a 

4. The stagnant cap 
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prescribed amount of surfactants on the bubble surface. Following thc analysis of 
Sadhal & Johnson (1983) the diffcrencc between the maximum surface tension of the 
clean interface and the minimum tension at the trailing stagnation point can be 
obtained from the integration of the linear relations 

Defining the inverse of the capillary number C,, as the differenrc between o ( y )  and 
a(()), (4.1) yields 

c;1 = T r O d B ,  (4.2a) 

(4.2b) 

Making use of the piecewise quadratic interpolation as shown in (2.25), the 
intcgration of 

SK 
where Tr / )  = T ~ B  + 7%. 

can be performed analytically and (4.2) becomes 

n=2 a=l 

+ B,"(sin -sin 0,) + C,"(On+l - O,)}. (4.3) 

The remaining integral in (4.3) was evaluated numerically, and the results are 
presented in figures 4 and 5. Figure 4 shows the results for the axisymmetric 
translation of the bubble in otherwise quiescent fluid. For small bubble radius 
(a/b = 0.1) the bchaviour approaches the exact solution of Sadhal & ,Johnson with a 
maximum deviation of about 7 O/O a t  y = x, which corresponds to a solid sphere. This 
deviation is partly due to the inherent inaccuracy of the numerical technique, and, 
in addition, due to the finite distance between the bubble and thc orifice. 
Furthermore, the results for a small bubble coalcsce into a single curve (within 3 %) 
for all the distances considered, 2 < Z ,  < 10, which indicates minimal influence of the 
orifice wall on the bubblc motion. For larger bubbles, Cil increases with increasing 
bubble radius and diminishing bubble-to-orifice spacing. Hence, in the vicinity of the 
orifice, a larger surfactant concentration is required to establish the same cap angle 
as in the unbounded motion. Similar behaviour is demonstrated in figure 5 for a fixed 
bubble in Sampson flow into the orifice. Here, the magnitude of the inverse capillary 
number is smaller owing to the decreasing fluid velocity with distance from the 
orifice. Moreover, figure 5 is given for a fixed flow rate corresponding to P m  -Pm = 
1. DiBerent flow rates will result in directly proportional changes of the inverse 
capillary number. 

Some of the results shown in figures 4 and 5 indicate that the reciprocal capillary 
number attains a maximum value when the cap anglc is about 2.7 rad. This 
behaviour is consistent for geometries involving bubbles equal to or larger than the 
pore and in its proximity (2, 6 3 ) .  Although the decrease in Cil with increasing cap 
angle is small, this trend differs qualitatively from the monotonic behaviour 
associated with uniform flow past a capped bubble. In this context it should be 
emphasized that the presence of maxima in (7;' does not correspond to maximum 
drag. As shown in figures 2 and 3 ,  the total drag increases monotonically with 
increasing cap angle, which is due to thc combined contributions of the integrated 
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FIGURE 5 .  Reciprocal capillary number as a function of the cap angle for a fixed bubble in 
Sampson flow. 

tangential and normal stress components on the spherical surface. The contribution 
of the normal stress to the total drag is, in principle, larger for the case involving flow 
through the orifice and exceeds that for uniform flow past a bubble due to the 
imposed pressure gradient in the exterior flow field (P-, > P,). The reciprocal 
capillary number, on the other hand, represents only the integral action of the shear 
stress on the immobile cap. Clearly, the total surface shear stress is influenced by the 
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FIGURE 6 Total  amoun t  o f  surfnetant on a bubble translation away from the orifire. 

size of the immobile cap as well as by the magnitude of the local shear stress. The 
latter is a manifestation of the flow field in the  vicinity of the cap. It is likely, 
therefore, to  be expected tha t  there will be larger local stresses when the bubblc is 
close to  the orifice boundary whereby the narrow gap between the spherical and wall 
boundaries introduces steep variations in the velocity ficld, and, consequently, larger 
tangential stresses. With increasing cap size, the immobile surface near the front 
stagnation point can act t o  retard the tangential velocity downstream along the 
spherical surface, and, therefore, reduce the magnitude of the local shear stress. 
Thus, the competing influences of the increase of the total shear stress for larger 
immobile surface and the accompanying reduction in the magnitude of the local 
stress can result in maximum C";' when y < 7c. 

The monotonic decrease of the inverse capillary number with distance from the 
orifice for a fixed bubblc size and cap angle indicates tha t  for a constant, amount, of 
surfactants on the bubble surface the cap angle must expand as the bubble moves 
away from the orifice. To illustrate this effect the total amount of surfactants is 
computed using the Gibbs monolagcr constitutive relations 

C3cT ar 
ae ae - = -RT-, (4.4) 

where T is the temperature and K is the univcrsal gas constant. Clearly, the ideal 
monolayer description given by (4.4) is not necessarily suitable for the stagnant 
interface, which can be characterized as a condensed film and, therefore, does not 
obey the linear gaseous relations. h'evcrtheless, the linear Gibbs relations can providc 
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FIGURE 7 .  Total amount of surfactants on a fixed bubble in Sampson flow 

a useful qualitative description of the stagnant-cap expansion. Consequently, the 
total amount of surfactants can be determined from the relation 

[a,,,-a(@)] sin Bd@. (4.5) 

Using a similar quadratic interpolation as shown in (4.3), equation (4.5) was 
integrated numerically and the results are shown in figures 6 and 7. For the case of 
a translating bubble (figure 6) .  The exact solution of Sadhal & Johnson is approached 
for small bubble size, a lb  = 0.1, with an accuracy of less than 7 YO. For larger bubbles 
and smaller bubble-to-orifice spacing the total amount of surfactants exceeds 
appreciably the values associated with the unbounded solution. Therefore, for a 
constant amount of surfactants, the stagnant-cap angle increases with distance from 
the orifice until the entire bubble surface becomes immobile. The expanding cap 
results in a monotonic increase of the drag correction factor, A,, while the diminishing 
hydrodynamic interaction reduces the drag. The combined effect enhances the 
influence of the orifice boundary on the motion of the bubble, and, consequently, the 
decrease of the drag with distance is slower than the behaviour indicated by figure 
2 for a constant cap angle. The same qualitative behaviour is shown in figure 7 for 
a fixed bubble in Sampson flow. Here, the presence of the bubble in the vicinity of 
the orifice exposes the interface to increasing external currents which act to condense 
the cap and reduce its angle. In the case of a bubble rising from the orifice in the 
presence of Sampson flow, the two cases can be combined linearly to obtain the 
dynamic cap size evolution and the corresponding drag correction factor. 

5.  Conclusions 
The motion of a bubble at the exit of an orifice, in the presence of flow in the 

opposite direction, is shown to be greatly influenced by the hydrodynamic interaction 
with the confining boundary and by the presence of a stagnant cap of insoluble 
surfactants. The results demonstrate that  for a fixed amount of surfactants on the 
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bubble surface the size of the stagnant cap will increase with increasing distance from 
the orifice owing to the decreasing sweeping eEect of the exterior phase. 
Consequently, the area of the immobile surface increases and thc drag-force decrease 
is slower when compared to a constant-cap-size bubble. The present results compare 
well with the exact solution of Sadhal &, Johnson (1983) for the translation of’ a 
bubble in the presence of a stagnant cap in unboundcd medium. Furthermore, a 
comparison with the numerical collocation solution of Ilagan P f  al. (1982) for the 
axisymmetric motion of a solid sphere in the vicinity of an orifice shows good 
agreement. The numerical inaccuracy associated with the present results is estimated 
to be smaller than 7 YO, which is typical of the numericd integral technique employed 
in this study. 

The main shortcoming of the present solution is that i t  does not consider the effect 
of bubble deformation. Sadhal & Johnson (1986) have shown that in unbounded flow 
the shape of the bubble is close to a prolate spheroid and the deformation is capsize 
dependent. For small stagnant caps the downstream interface exhibits larger 
deformations than the front surface, while the bchaviour is reverscd for large rap 
angles. Moreover, the influcnce of the confining orifice wall will enhance surh 
deformation at close bubble-to-orifice spacing. 

The numerical boundary-integral technique employed in this study appears to be 
useful for treating problems involving complicated geometry although it is restricted 
by its limited accuracy and long computation time. The average computation time 
required to evaluate the drag force for a single configuration and prescribed flow 
conditions is about 5 minutes of CPU time on an IBM 3081 computer Furthermore, 
despite the acceptable convergence of the total drag the local distributions of thc 
stress components and the interfacial velocity do not converge with sufficient 
accuracy. Therefore, the computation of the streamlines cannot be performrd unless 
the number of collocation points is considerably increased which, in turn, will require 
prohibitively long computation time. 

Finally, it is important to emphasize that the present analysis is based on an pr ior i  
determination of the stagnant-cap location. Other interesting cases, associated with 
the motion of a bubble near the orifice in the presencr of insoluble surfactants, can 
arise when the motion of the bubble coincides with the direction of the exterior flow. 
When the bubble rises from the orifice and the flow is in the same direction a stagnant 
belt of surfactants can be formed owing to the directional change of the interfacial 
velocity. On the other hand, when both the exterior fluid and thc bubble move 
towards the orifice two stagnant caps on the bubble poles can be established. In both 
cases the problem can be treated, in principle, by the prescnt technique with a two- 
variable iterative trial and error procedure where the belt location and its size, in the 
first case, or the sizes of the stagnant caps, in the second, are sought. Nevcrtheless, 
this method is restricted by the excessive computation time required to complcte a 
single iterative run. It seems that an alternative procedure in whith the coupled 
hydrodynamic and mass conservation equations are considered simultaneously is 
preferable (Holbrook & Lcvan 1983a, b) .  

This work was supported by the National Science Foundation Grant numbcr C’I’E- 
8404261. 
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